
The database evolution: modernization for a data-driven world26

In this article we will give a brief overview of the history of database management systems, and then discuss why it is
important for organizations to migrate to a modern database management system.

Why bringing data to the cloud is inevitable
As AI emerges, data is becoming more important than ever. In order to stay relevant,
organizations have to start using their data to fuel their business models and improve their
operations. However, large volumes of data do present challenges. In this article, we briefly
revisit the history of databases to learn how these challenges have been tackled one by one
in the course of the history of databases. Finally, we will discuss why organizations need to
adopt the latest in database technology and the possible scenarios to implement this
technology.

The database
evolution:
modernization
for a data-
driven world

27Compact 2023 2 50 years of thought leadership

INTRODUCTION

During the COVID-19 pandemic, businesses needed to
respond to immediate needs created by the global crisis.
On-premises systems lacked the scalability to support
working from home for many people. Cloud technology
helped businesses to respond to these challenges with
cloud-based VPNs, cloud-based firewalls and modern
workplace systems. Many organizations needed to work
through the recovery from the pandemic with new
approaches leveraging cloud-based technology, and in
some cases, even looking to reimagine their businesses
for the long term.

Data is a valuable commodity for companies because
of its potential to empower better decision-making.
However, data management tools and processes must be
equipped to handle the volume, velocity, and variety of
data that companies face today. According to [Abdu22],
the exploding volume of data and the many new appli-
cations that generate and consume it have created an
urgent need for data management programs to help
organizations stay on top of their data.

Now let’s first take a step back into history to see where
we came from and get an understanding of what these
data management programs need to accomplish. We will
then briefly explain the pain points of classic database
systems before we discuss how modern database man-
agement systems overcome some of the challenges that
many organizations face today. Finally, we will discuss
the different approaches that database management
programs can take to implement a modern database
management system.

Giovanni Vierling
is a director in the Microsoft
team of KPMG Enterprise
Solutions.

The database evolution: modernization for a data-driven world28

A BRIEF HISTORY OF DATABASE
MANAGEMENT SYSTEMS

The history of databases dates back long before comput-
ers were invented. In the past, data was stored in journals,
libraries, and filing cabinets, taking up space and making
it difficult to find and back up data as well as making
analyses and correlations. The advent of computers in
the early 1960s marked the beginning of computerized
databases. In 1960, Charles W. Bachman designed the
integrated database system, the “first” DBMS. IBM, not
wanting to be left out, created a database system of its
own, known as IMS. [Foot21] describes both database
systems as the forerunners of navigational databases.
According to [Kell22] however, the history of databases as
we know them, really begins in 1970.

In 1970, a computer scientist from IBM named Edgar F.
Codd published an academic paper titled A Relational
Model for Data for Large Shared Banks. Codd described a
new way of modeling data by introducing relational
tables to store data only once. This system (Relational
Database Management System (RDBMS)) allowed the
database to answer any question as long as the data was
in it, and allowed efficient use of storage. Back then, stor-
age was still a major challenge with hard drives having
the size of a truck wheel and being quite expensive.

In the eighties and nineties, relational databases grew
increasingly dominant. IBM developed SQL the Struc-
tured Query Language, which became the language of
data and became ANSI and OSI standards in 1986 and
1987. When processing speeds got higher and “unstruc-
tured” data (art, photographs, music etc.) became much
more commonplace, a new requirement came to light.
Unstructured data is both non-relational and schema-less.
RDBMS were simply not designed to handle this kind of
data. With growing amounts of data and new purposes
being explored, new database management systems were
developed, such as systems using column stores and
key-value stores. Each of these systems had strengths and
limitations that would make them suited for a limited
use case. NoSQL (“Not Only” Structured Query Language)
came out in response to the need for faster speed and
processing of unstructured data ([Foot21]).

In the 2010s and 2020s, Database Management Systems
(DBMS) have been evolving and innovating to meet the
emerging needs and challenges of management informa-
tion systems and other applications. It started with the
ability to run your DBMS in the cloud on a cloud-based
infrastructure, but soon after software companies such
as Microsoft began to offer native cloud DBMS. In a native
cloud DBMS, the vendor is responsible for the full ser-
vice of the DBMS, including hosting, hardware, licenses,
upgrades and maintenance. Cloud DBMS, which are

hosted and managed on cloud platforms, offer benefits
in cost, availability, scalability, and security, as well as
enabling users to access data from anywhere and anytime.
Based on research by [Ulag23], AI-enhanced DBMS use
artificial intelligence techniques to enhance the function-
ality and performance of DBMS, with benefits in automa-
tion, management, optimization, and intelligence.

Larger volumes of data, the need to work with varying
teams across different locations with this data and the
need to keep costs down, continues to drive new database
technologies.

PAIN POINTS OF CLASSIC DATABASE
SYSTEMS

Classic on-premises database systems are limited in
terms of scalability and maintainability. The hardware
behind these systems limits the size of their storage
and their computational power and can often not be
expanded without significant investment. Since these
systems often have a different array of capabilities which
requires products from multiple vendors, maintenance is
expensive and difficult.

Classic, on-premises, databases eventually create the
following pain points:
1. Cost and infrastructure management:

 o Hardware costs: One of the most significant pain
points is the substantial upfront cost associated
with purchasing and maintaining the necessary
hardware infrastructure. This includes servers,
storage devices, networking equipment, and
cooling systems. Organizations need to budget for
hardware upgrades and replacements over time.

 o Operational costs: Apart from the initial capi-
tal expenditure, there are ongoing operational
costs, such as electricity, space, and skilled IT
personnel to manage and maintain the on-prem-
ises infrastructure. Scaling the infrastructure
to accommodate growth can be both costly and
time-consuming.

2. Scalability and flexibility:
 o Limited scalability: On-premises DBMS solutions

often have finite capacity limits based on the
hardware infrastructure in place. Scaling up to
accommodate increasing data volumes or user
demands can be slow and expensive, requiring the
procurement of new hardware.

 o Lack of flexibility: Making changes to the
infrastructure or DBMS configurations can be
cumbersome. It may involve downtime, complex
migration processes, and compatibility issues,
limiting an organization’s ability to quickly adapt
to changing business needs.

29Compact 2023 2 50 years of thought leadership

3. Maintenance and security:
 o Maintenance overhead: On-premises DBMS solu-

tions require constant maintenance, including
software updates, patch management, and hard-
ware maintenance. This can be time-consuming
and may disrupt normal operations.

 o Security concerns: Organizations are responsible
for implementing robust security measures to
protect their on-premises databases. This includes
physical security, data encryption, access control,
and disaster recovery planning. Failing to address
these security concerns adequately can lead to
data breaches and regulatory compliance issues.

 o While on-premises DBMS solutions provide
organizations with greater control over their data
and infrastructure, they also come with signif-
icant challenges. Many businesses are turning
to cloud-based database solutions to alleviate
these pain points, as they offer greater scalability,
reduced infrastructure management overhead,
and enhanced flexibility, among other benefits.
However, the choice between on-premises and
cloud-based databases should be based on an
organization’s specific needs, budget, and regula-
tory requirements.

Most companies, today, use combinations of public
clouds and private clouds. The database management
systems need to be able to provide access to data sources
across these different cloud offerings. In classic database
management systems, different workloads are needed to
work on their own data, each workload having its own
governance structure. This leads to redundant data in
different locations and the need to duplicate this data to a
data warehouse for analytics resulting in redundant data.
Security across these different workloads and redundant,
scattered data is a common pain point for organizations.

THE CASE FOR MODERNIZATION

According to [Ulag23]: In the age of artificial intelligence
(AI), the ability to analyze, monitor and act on real-
time data is becoming crucial for companies that wish
to remain competitive in their industries. Therefore,
modern database systems need to be able to handle large
volumes of data coming from multiple data sources like
sensors, IOT devices and many other data sources. This
data needs to be ingested into the data analytics environ-
ment with high throughput and low latency.

When considering application modernization and there-
fore also database modernization, the question might
be how to get this complex database technology trans-
formation right. Almost any application collects, stores,
retrieves and manages data in some sort of database. As

In the age of AI, the
ability to analyze,
monitor and act on real-
time data is becoming
crucial for companies
that wish to remain
competitive

The database evolution: modernization for a data-driven world30

we have seen, traditionally this was often done using a
relational database management system (RDBMS) on a
dedicated, often on-premises, server. As discussed, these
types of databases provide organizations with increasing
problems regarding:
a. high license and hardware costs;
b. license compliance constraints (e.g. expensive Java

clients);
c. new sources and types of data, often unstructured;
d. scalability performance and global expansion needs;
e. modern applications often needing cloud-native agi-

lity and speed of innovation which cannot easily be
achieved with dedicated hardware in an on-premises
situation.

According to [Gris23], a modernization path therefore
needs to include the following business and technology
gains:
 • Use open-source compatible databases with global

scale capabilities.
 • Remove the undifferentiated heavy lifting of self-

managing database servers and move to managed
database offerings.

 • Unlock the value of data, and make it accessible across
application areas and organizations such as analytics,
data lakes, Business Intelligence (BI), Machine Lear-
ning (ML) and Artificial Intelligence (AI).

 • Enable decoupled architectures (event driven, micro
services).

 • Use highly scalable purpose-built databases that are
appropriate for non-relational and streaming data.

DATABASE MODERNIZATION PATTERNS

In our consulting practice we recognize four common
patterns for database modernization:
1. Lift and shift: Move a database server to a public cloud

service like Azure, Google Cloud or Amazon Web
Services.
In this scenario, the organization simply deploys
a Virtual Machine (VM) in their private or public
cloud and runs the exact same database management
software from this (IaaS) machine. Each application
is migrated as-is. It is a quick solution without the
risks or costs associated with making changes to code
or software architecture. The downside of course
is that the organization remain responsible for the
maintenance of the VM, still must pay the associated
licenses and although improved, still has scalability
limitations with respect to storage and compute.

2. Refactor or repackage: This migration strategy
involves limited changes to the application design
and moves the database to a managed instance such
as Azure SQL Managed Instance or Amazon RDS for
SQL Server.

In this scenario, licenses are replaced by a consump-
tion-based model and limitations with respect to
scalability decrease. The database system is managed
by the service provider and the organization there-
fore no longer has to manage the hardware, operating
systems or perform maintenance on the RDBMS.

3. Rearchitect: By modifying or extending the applica-
tion’s code base, the application is scaled and opti-
mized for the cloud. In this scenario, the application
will be using a public cloud-native database manage-
ment system such as Aurora (AWS), Google’s Cloud
SQL or Azure SQL Database. This scenario has all the
advantages of leveraging a modern database solution
that fulfils the need of a better practice modernization
path as described above. However, not all applications
can be modernized to the extent needed, sometimes it
is simply better to build cloud-native applications.

4. Rebuild: The application and its database will be
rebuilt from scratch in this scenario. Leveraging
cloud-native development platforms and leveraging
cloud-native database solutions such as Microsoft
Dataverse, Microsoft Azure Serverless SQL Pools,
Google Cloud SQL and Amazon Aurora Serverless.

Compare the complexity and value proposition for these
options in Table 1 containing different modernization
patterns. A low complexity means that few dependencies
and not much changes need to be made to the software
that use the DBMS, and high complexity means that
many dependencies and substantial changes need to be
made to the software that uses the DBMS.

Table 1. Different modernization patterns.

Lift and shift Low Low Low

Refactor or
repackage

Low Medium Medium

Rearchitect Medium High High

Rebuild Highest Highest Highest

A lift and shift approach is a quick solution with mini-
mal risks, it helps in cases where hardware needs to be
replaced imminently and reduces the risk associated
with changing software. It does not change the licensing
nor the limitations with respect to storage and compute
that are associated with the limitations of a Virtual
Machine and the RDBMS system. It can be a very good
start when an organization needs to renew their data
center contracts or when hardware needs to be replaced.

If the goal is to improve the management of data around
your application landscape and not yet modernize the
applications, rearchitecting the application landscape
by changing to a managed instance for your database
system can be a viable solution. It helps the organization

50 years of thought leadership

to become less dependent on hardware and maintenance
of the database management system. It will however
remain dependent on dedicated hardware, now managed
by a service provider, and will therefore still have limi-
tations with respect to scalability (storage and compute).
The risk of this scenario is also relatively low since it does
not require changes to the DB schema, data types, and
table structure.

If the goal is to fully modernize the application landscape
and independent of hardware, maintenance and licenses
a complete rebuild is in order. This modernization pat-
tern has the highest risk and will cost the most, because
both software and DBMS need to change, but it does
allow the organization to use the database as a service
and become fully independent of hardware, maintenance
and licenses.

CONCLUSION

With the increase of data volumes, the increasing need
for speedy access to data, the processing of unstructured
data and the decentralization of data, database man-
agement systems have evolved from simple relational
databases to modern cloud-based database management
systems that can:
 • manage the needs of the increasing number of

cloud-native applications;
 • manage governance across databases;
 • perform data analytics on a large volume of data in

near real time, with no extraction, transformation
or loading pipelines and no performance impact on
transactional workloads; and with anyone in the
organization able to access and analyze the data.

Breaking free from legacy databases allows the organiza-
tion to migrate away from complex licensing structures
to a pay-as-you-go scenario. It also breaks free from scala-
bility limitations since most of the cloud-native database
management systems separate storage from compute and
have these run in a separate layer completely detached
from the hardware layer. Owners of serverless applica-
tions are not concerned with capacity planning, config-
uration, management, maintenance, fault tolerance, or
scaling of containers, VMs, or physical servers, the cloud
provider allocates machine resources on demand, taking
care of the servers on behalf of their customers.

In our consulting practice, we see four different migra-
tion patterns that organizations can choose from to
migrate to a modernized data platform with varying
degree of risks and costs and therefore also rewards.
Depending on the organization’s goals and ambitions, a
fitting migration pattern can be chosen.

References
[Abdu22] Abdullahi, A. (2022, October 28). What is data

modernization? Retrieved from: https://www.techrepublic.
com/article/what-is-data-modernization/

[Foot21] Foote, K.D. (2021, October 25). A Brief History of
Database Management. Retrieved from: https://www.stu-
docu.com/row/document/federal-college-of-education-spe-
cial-oyo/computer-science/a-brief-history-of-database-man-
agement/40351890

[Gris23] Grischenko, A. & Rajain, S. (2023, July 12). How
to plan for a successful database modernization.
Retrieved from: https://aws.amazon.com/blogs/database/
how-to-plan-for-a-successful-database-modernization/

[Kell22] Kelly, D. (2022, February 24). A brief history of
databases: from relational to no SQL to distributed SQL.
Retrieved from: https://www.cockroachlabs.com/blog/histo-
ry-of-databases-distributed-sql/

[Li23] Li, A. (ASA). (2023, July 27). Microsoft Fabric Event
Streams: Generating Real-time Insights with Python, KQL
and PowerBI. Retrieved from: https://blog.fabric.microsoft.
com/en-us/blog/author/Alicia%20Li%20(ASA)

[Ulag23] Introducing Microsoft Fabric: Data analytics for
the era of AI. Retrieved from: https://azure.microsoft.
com/en-us/blog/introducing-microsoft-fabric-data-analyt-
ics-for-the-era-of-ai/

About the author
Giovanni Vierling is a director in the Microsoft team of

KPMG Enterprise Solutions. He is responsible for our
services concerning Microsoft Cloud such as Powered Data
Analytics, the Power platform and Azure. Giovanni has
worked as an IT manager for one of our customers and was
globally responsible for all MSFT Applications within that
organization. He has ample operational experience with
Azure, Power Platform, Power BI, RPA and Dynamics 365.

31Compact 2023 2 50 years of thought leadership

