
Organizing testing in relation to the user22

Fifty years after the first issue of Compact, we look back at an article by founder Han Urbanus about testing information 
systems. Has the content of the article stood the test of time?

Fifty years ago, Han Urbanus was one of the founders of a new journal in the field of 
managing, controlling, organizing, and improving information assurance: Compact. In 1974, 
he wrote an article that elaborated on the role of the end user in testing a new (or modified) 
information system and how testing could be organized. Now, half a century later, we look 
back on the article: has its content stood the test of time?

Organizing testing in 
relation to the user
Fifty years later



23Compact 2023 2 50 years of thought leadership

Dennis Stam MSc CISA 
EMITA
is a director within KPMG 
Advisory’s Technology group.

 INTRODUCTION

In 1974, Han Urbanus wrote an article for Compact, a new 
journal in the field of managing, controlling, organizing 
and improving information provision of which he was 
one of the founders. In the article ([Urba74]) Urbanus 
elaborated on the role of the end user in testing a new (or 
changed) information system and how testing could be 
organized. 

This article first briefly summarizes Urbanus’ insights 
on organizing user testing back in 1974. It then considers 
how testing is done today.

TESTING IN 1974

As early as 1974, there was a revolution in the world of 
software development. More and more reference was – 
rightly so – made to the responsibility that businesses 
have regarding the information in and from information 
systems. End users are therefore also crucial stakeholders 
who must give their approval for new systems (developed 
on their behalf) or changes to existing systems. The ques-
tion, however, was: in what way can end users determine 
that the system has been developed in accordance with 
the requirements they have formulated?

Urbanus suggested that information systems testing 
should be considered a separate phase within system 
development. (Even) at that time, it was not unusual 
for testing a large and complex system to take at least as 
much time as designing and coding it.

In addition to considering the testing process as a sep-
arate phase, Urbanus also indicated that users should 
be involved throughout the development cycle. System 
acceptance criteria should be established during pre-
liminary research. These criteria form the basis for the 
system design as well as the testing and (data) conversion 
activities. However, users are usually not familiar with 
testing and do not possess the skills to put together a test 
set. Users should therefore be involved in the process 
from the very beginning to “train” how to compose tests 
so that they provide maximum value for system and 
acceptance testing.

Not only was there a distinction between system and 
acceptance testing, Urbanus proposed (sub)phasing for 
system testing as early as 1974:
 • testing of individual modules;
 • testing of individual programs;
 • Testing program series (chains);
 • testing by subproject;
 • testing of the entire project.

For the Dutch version of 
this article, please scan 
the QR code.



Organizing testing in relation to the user24

By testing small components first and – if the results are 
positive – scaling up to a larger whole and testing that, 
sub-phasing ensures that complexity decreases. This 
enables more careful testing and reduces the search for 
a needle in the (IT) haystack. Unfortunately, Urbanus 
noted, module testing is becoming less common due to 
impatience (people want to be able to test the full pro-
gram as soon as possible) and savings.

Urbanus came up with a set of guidelines and the call to 
move toward a more organized and disciplined approach 
to testing:
 • Formulate measures of program acceptance.
 • Establish a test plan.
 • Develop test cases.
 • Describe the test data and its special purpose.
 • Standardize job control of testing operations.
 • Work on a basis of a source library to allow repetition.
 • Determine in advance the expected results of testing.
 • Develop utilities, such as for output comparison.
 • Test methodically, keeping a close eye on what has 

and has not been tested.
 • Keep a test log.
 • Have data for system testing produced by users.

THE DEVELOPMENT OF PROFESSIONAL 
TESTING

Urbanus seems to be a pioneer in the field of test man-
agement. In the testing community, Glenford Myers is 
known as the first who, in 1979 (five years after Urbanus’ 
article), gave a definition of “testing” in his book The Art of 
Software Testing: 

“(...) the process of executing a program with the 
intent of finding errors”. 

However, the rapid development of information sys-
tems in the 1980s showed that the growing complexity 
demanded more than just “finding errors”. A more struc-
tured approach was sought.

The first book on the TMap testing approach – developed 
on Dutch soil – was published in 1995. Testen volgens 
TMap (“Testing according to TMap”) focused on defining 
testing as a structured process, introducing the following 
definition:

“Testing is a process of planning, preparation 
and measurement aimed at determining the 
characteristics of an information system and 
demonstrating the difference between the current 
and desired status.”

TMap brought the (IT) world a market standard for 
testing and test management. A few years later, in 1998, 
the International Software Testing Qualifications Board 
(ISTQB) was founded, an international organization that 
provides standardized training with tests and certificates 
for software testers. 

In a world where IT was becoming increasingly impor-
tant – if not indispensable – to organizations, the evolu-
tion of the testing approach was necessary. New insights 
into testing and system development, including the 
emergence of iterative and incremental development 
methodologies and Agile in particular, led to new ver-
sions of TMap. These newer versions brought a trade-
off between costs and benefits (including by applying 
risk-based testing) and aligned with the innovations in 
system development.

A RETROSPECT ON THE ORIGINAL ARTICLE

Many of the propositions posited by Urbanus have 
become part of today’s (professional) testing approach 
as proposed by TMap or ISTQB. Testing has become a 
separate phase, a distinction is made between system and 
acceptance testing, test plans are made in advance, users 
are involved in testing, et cetera. In short, testing has 
become a profession following a structured approach. Yet 
there are nuances between the way it is done today and 
the way it was done when Urbanus wrote his article.

The distinction in test phasing has been adopted. Nowa-
days, a distinction is usually made between development 
testing (by the developer), system testing (by test special-
ists) and acceptance testing (by acceptors). Within these 
tests, the principle proposed by Urbanus is also followed: 
start with testing small modules and slowly build up to 
testing integrations, programs and eventually chains. 
However, where Urbanus still observed a decline in the 

Urbanus seems to be a 
pioneer in the field of test 

man agement 



Compact 2023 2 50 years of thought leadership

application of development testing, many developers 
today recognize the importance of good unit testing and 
strive to (automatically) perform these tests with cov-
erage of at least 80 percent of the program code present. 
This helps to detect errors early and avoid high costs for 
remediation in later phases of system development.

Similar to the rise of unit testing, the development of 
“continuous integration” (CI) and “continuous delivery” 
(CD) has provided structure to how software code is 
managed (using a version management system) on the 
one hand and a repeatable process on the other. Changes 
are no longer made directly to the information system, 
instead, the source code is maintained in a version man-
agement system such as Git or SVN. A new version of the 
software can be prepared and compiled from this system 
and rolled out to a (test) environment. This gives the 
tester more clarity about (the version of) the test object, 
and newer versions – with, for example, the latest fixes – 
can be made available more easily for testing. In addition, 
this setup provides a basis for the automated execution 
of unit and (part of) system tests, which also offers more 
certainty about the quality of the test object when the 
tester starts working with a new version.

The role of the user organization is also formalized; in 
almost every test program, representatives of the busi-
ness are asked to participate in testing in addition to the 
use of test professionals. In some cases, end users are 
even asked to participate in reviewing the design already 
during system development and performing tests during 
the system test phase. Today, however, when performing 
acceptance tests, a distinction is made between different 
acceptance testing types, such as functional acceptance 
test (FAT), user acceptance test (UAT), production accept-
ance test (PAT) and operational acceptance test (OAT). In 
this context, users are the implementers within the UAT 
(and administrators, also to be considered a special user 
group, within the OAT), with the understanding that 
users must – above all – bring in subject matter expertise. 
For this reason, users are often supported by test special-
ists in managing test preparation and execution, defining 
the test set and producing the test data.

The growing complexity of information systems has 
brought similar complexity to the data used. Whereas 
in 1974 there was still simple talk of users preparing test 
data, modern systems require a multitude of efforts to 
arrive at a good set of test data. After all, testers need test 
data focused on situations that have not (yet) occurred, 
for which test data must be fabricated, as well as test data 
that are as representative as possible of real-life situations 
that the information system has to deal with. The emer-
gence of privacy legislation such as GDPR complicates 
the latter in recent years; data that exists in the produc-
tion environment often contains privacy-sensitive data 

and was not collected for the purpose of testing, and 
should not be used for testing for that reason. Test data 
management is an emerging specialization focused on 
crafting data for non-production purposes and involves 
anonymizing, subsetting, masking, scrubbing, “profil-
ing” and “ageing” transactions and “provisioning” data.

In addition to a growing need to manage test data, the 
frequency of delivery and the increasing complexity of 
information systems require an ever-increasing degree of 
test automation and deployment of tooling. The “utili-
ties” mentioned by Urbanus are therefore no longer small 
utilities for output comparison or taking snapshots, but 
fully automated test sets, emulation of software compo-
nents (service virtualization) and tools to run tests on 
multiple platforms simultaneously (for testing mobile 
apps or Web applications, for example).

CONCLUSION

All in all, the world of testing has not stood still in the past 
fifty years. Urbanus was rightfully a visionary in this field, 
as evidenced by the multitude of guidelines he drafted 
back in 1974 that eventually became part of the market 
standards for testing and test management in the 1990s.

That said, however, we are not there yet. As information 
systems become even more complex and new system 
development methods evolve, the testing domain also 
has to keep up. The emergence of new trends such as big 
data, blockchain and even program generation using AI 
such as ChatGPT will require further evolution of test-
ing. Hopefully fifty years from now, a retrospect on this 
article will draw a similar conclusion, and testing will 
have been further professionalized.

25

Literature
[Urba74] Urbanus, J.H. (1974). De organisatie van het testen 

in relatie tot de gebruiker. Compact, 1974(1), 3-9.

About the author
Dennis Stam MSc CISA EMITA is a director at KPMG 

Advisory N.V. He is responsible for the Tech Advisory 
team, which focuses on improving software quality 
in a broad sense. He specializes mainly in the topics of 
source code review, testing and test management, and has 
extensive experience with other aspects within system 
development projects. 

50 years of thought leadership


