
The concept of Infrastructure as Code (IaC) is often perceived as the holy grail of cloud computing and DevOps. In this article we describe our 
experiences in applying IaC in the context of a multi-tier cloud native application. We describe good practices and lessons learned when apply-
ing IaC in practice, and reflect on the added value of IaC implementations versus the costs.

41

A concrete case study to reflect on the value 
and costs of Infrastructure as Code
In this article we reflect on the value of applying Infrastructure as Code (IaC) for the 
development of a cloud native application. IaC is often presented as an obvious methodology to 
pursue in the development of modern cloud native applications, in practice it can be complex 
and costly to implement and maintain. We present design principles and good practices to 
consider in Infrastructure as Code implementation, and share lessons learned through the 
implementation of a concrete use case. Finally, we present some key considerations to 
determine if Infrastructure as Code is suitable for your project and/or organization.

Ir. René Pingen
is a senior manager at KPMG 
Advisory.

pingen.rene@kpmg.nl

A reflection 
on the 
perceived 
benefits of 
Infrastructure 
as Code

Cloud ComputingCompact 2021 1



Initial Infrastructure
templates or scripts

Migration scripts

Infrastructure templates or
scripts

Infrastructure
resources

Infrastructure
resources

All deployments

Initial
deployment

1. Initial deployment & migration scripts 2. All changes using single set of templates

Changes

A reflection on the perceived benefits of Infrastructure as Code42

aged using software versioning tools (e.g. GIT) and automati-
cally deployed using DevOps and CI/CD processes and tools.

In this article we will describe our experiences in 
applying IaC in the context of a multi-tier cloud native 
application developed on the Microsoft Azure platform, 
and reflect on the value of using IaC versus the costs 
(initial implementation and change costs over time). 
We will start with some context regarding the deploy-
ment of IaC models, followed by introducing our case 
study. Next, we will provide the key design principles 
and design decisions, discuss the key challenges we 
faced in the implementation and finally reflect on the 
value versus the costs.

SELECTING THE RIGHT TECHNOLOGY 
AND DEPLOYMENT MODELS FOR 
INFRASTRUCTURE AS CODE

Organizations and DevOps teams are applying IaC in 
different ways. There are different technologies that can 
be used to deploy Azure resources, including:
	• Template based languages such as ARM templates 

and TerraForm (declarative)
	• Azure CLI and PowerShell scripts (Imperative)

Note that for different cloud platforms (AWS or GCP) 
similar technologies are available. 

Even though this has been debated, both the declara-
tive template languages (ARM and TerraForm) and the 
imperative scripts (Azure CLI and PowerShell) are in 
essence idempotent. This means that redeploying the 
templates/scripts multiple times will lead to the same 
result. In practice we see that these templates or scripts 
are used in two different ways:
1.	 Initial deployment templates and migration scripts. IaC 

templates or scripts are used for the initial creation 

Figure 1. Infrastructure as Code deployment models.

Many attempts at IaC 
do not seem to achieve 
the perceived benefits: 

they are not fully 
automated, complex, 

difficult to maintain and/or 
understand

INTRODUCTION

The concept of Infrastructure as Code (IaC) is often per-
ceived as the holy grail of cloud computing and DevOps. 
The idea of automating everything to eliminate manual 
activities in the deployment and maintenance of appli-
cation infrastructure and reducing operational costs, 
is definitively something worth pursuing. In practice 
however, we see many attempts at IaC that do not seem to 
achieve the perceived benefits: they are not fully auto-
mated, complex, difficult to maintain and/or difficult to 
understand (and thereby leading to higher costs). In our 
view, the concept of IaC goes beyond automation. It is 
about treating infrastructure as software, meaning that 
the development and maintenance of IaC should follow 
software engineering methodologies and best practices.

Infrastructure as Code is the practice of applying software 
engineering methodologies on the development of infrastructure. 
Infrastructure configurations are defined as code, which is man-



Check in
code

Infrastructure template file
(ARM)

Azure
Repos

Azure
pipelines

Azure
subscription

Trigger
deployment

Deploy infra
to Azure

43Compact 2021 1 Cloud Computing

(day 0) of resources (e.g. VM’s, databases). After this 
point, changes to the components are made using 
migration scripts. Note that in most cases this does 
mean that the original template cannot be used 
after the initial deployment, because any changes 
made after the initial template are not reflected in 
the template.

2.	 All changes using a single set of templates. Using an 
idempotent deployment template that contains 
the full configuration of the resources in scope. 
All configuration changes need to be made in the 
template, which is then redeployed. The advantage 
of this method is that the entire configuration is in 
a single place, which simplifies future deployments 
and potential migrations. Note that in this case, any 
configuration setting that is not specified in the 
template will be overwritten by the deployment.

We applied the second approach in our case study. This 
way, we ensure that we always have an accurate rep-
resentation of the infrastructure configuration and that 
there is consistency between the different components 
that need to connect. This requires that we are confi-
dent that no other changes are made to the environ-
ment and that the template is fully idempotent to avoid 
downtime. In practice, we see that many DevOps teams 
do not trust the templates and deployment mechanism 
to apply this methodology (see the following section on 
deployment anxiety).

CASE STUDY: DEPLOYING A CLOUD NATIVE 
APPLICATION THROUGH IAC

Our application is an advanced analytics application 
that consists of several components: a web-based client, 
database, data lake that contains several datasets, scala-
ble compute capacity to run algorithms and ETL tooling 
to move and transform data.

The infrastructure of our application has been devel-
oped on the Azure cloud platform by following a set 
of IaC principles and design decisions. We use Azure 
Resource Manager (ARM) templates for the definition of 

the infrastructure, and Azure DevOps as CICD platform 
to deploy the infrastructure to Azure. 

The high-level flow is illustrated in Figure 2. We 
develop the IaC templates, check them into an Azure 
GIT repository, which then triggers an Azure deploy-
ment pipeline. This deployment pipeline deploys the 
Azure resources to the specified environment according 
to the specified templates.

With this approach, we automate the process of deploy-
ing the infrastructure, and use automated test cases to 
perform sanity checks and ensure that the infrastruc-
ture is operational. 

PRINCIPLES AND DESIGN DECISIONS

Inspired by concepts such as the twelve factor app 
([Wigg17]), SOLID principles for object-oriented design 
([Mart03]) and others ([Bion19], [Feda19]), we have 
selected a number of principles and design decisions 
that we typically follow in the implementation of our 
solutions and have followed for this case study.

Infrastructure as Code templates and 
deployments are idempotent

A function is called idempotent if applying the function 
multiple times leads to the same result. In the context of 
IaC, this means that deploying infrastructure templates 
will always lead to the same result. If we for example 
want to change a configuration setting of an already 
deployed database resource, we can simply change the 
configuration setting in the initial template, redeploy 
the entire template which results into one database 
with the right configuration. In our case, we did have 
to deal with a couple of limitations to ensure the infra-
structure templates remain idempotent (for example: 
deployments of code can lead to infrastructure config-
uration changes that need to be handled in the infra-
structure deployment).

Figure 2. Infrastructure as Code deployment pipeline.



Artifacts | + Add

_AzureTools

Schedule
not set

Development
1 job, 0 task

Stages | + Add

Test
1 job, 0 task

Acceptance
1 job, 0 task

Production
1 job, 0 task

A reflection on the perceived benefits of Infrastructure as Code44

The infrastructure is fully managed through 
code and under source control

In traditional environments, the concept of configura-
tion drift is a serious concern. Configuration drift is the 
concept where the actual configuration of production 
applications and servers changes over time while the 
design and documentation are not updated, meaning 
there is no complete documented to-be configuration. 
This can lead to tricky situations, for example in migra-
tion scenarios where no one remembers how the applica-
tion should be configured. By not allowing write access 
to the environments (typically acceptance and produc-
tion), we can enforce that all changes are made through 
code. All code is under source control (in our case GIT) 
to enable versioning of the infrastructure templates, 
which ensures that the full configuration is captured in 
code (although supporting documentation is still highly 
recommended).

Secrets are stored in vaults, configuration is 
separated from code

The ARM templates to deploy the infrastructure depend 
on configuration settings and secrets. Secrets should 
be stored in KeyVaults and can be passed to templates 
using KeyVault references, as documented by Microsoft 
([Micr20]). Environment configuration settings should be 
passed to the templates at deployment time. 

Keep it simple

In essence, the infrastructure templates and deploy-
ment pipelines should be simple to use and maintain. 
In practice, this can be difficult as environments can 
grow complex and in some cases workarounds need to be 
applied (see challenges section). To keep the environment 
simple, we have followed a couple of guidelines:
	• Only pass environment specific, user friendly parameters 

to the templates. Limit the number of parameters that 
should be passed to the templates to keep usage sim-

ple. For example: we pass the parameter ‘env’ to the 
templates which we use to generate the names for all 
the resources, instead of passing all resource names 
individually.

	• Keep the templates modular and maintainable. Putting all 
resource definitions in one big template makes them 
complex to maintain in the long run. Through the 
use of linked templates (see picture below), it is possi-
ble to modularize the infrastructure definition.

Dev/prod parity

In order to properly test deployments before going to 
production, it is important to ensure that development, 
test and acceptance environments are (nearly) equal to 
production. This means that the same templates should 
be used to configure the environments and differences 
between the environments should be kept to a mini-
mum (e.g. production environment is differently sized). 
Through the use of CI/CD deployment pipelines, we can 
ensure that infrastructure deployments are deployed 
first to the test and acceptance environments before 
being deployed to production, see the example Azure 
DevOps pipeline below

The solution infrastructure is deployed with a 
linked scripts/templates in a single pipeline

We have seen many implementations in Azure where 
separate ARM templates are deployed in individual pipe-
lines. Dependencies between the different components 
are manually passed as configuration parameters, lead-
ing to a complex set of templates and pipelines, which 
is difficult to maintain. By using one integrated master 
template for the solution, we manage all these dependen-
cies centrally, ensuring references to other components 
are valid and naming is consistent.

Note: In some cases, this is not feasible in practice, or 
workarounds are required, but the principle holds in general.

Figure 3. Deployment pipeline in Azure DevOps.



Azuredeploy_wold.json

Azuredeploy_wold.json

Virtual Network

ResourcesLinked templatesMain template

Network security group

Web app

Web app configuration

Database

Data factory

Databricks

Monitoring Config & Alerts

Azuredeploy_frontend.json

Azuredeploy_database.json

Azuredeploy_etl.json

Azuredeploy_monitoring.json

45Compact 2021 1 Cloud Computing

BRINGING EVERYTHING TOGETHER IN OUR 
CASE STUDY

For our multi-tier cloud native application, we man-
aged to create a full declarative configuration of the 
infrastructure. All resources can be deployed from a 
single template through the use of linked templates, as 
depicted in the image below.

The deployment of the infrastructure is performed in 
two steps:
1.	 The deployment of the ‘supporting infrastructure’ 

which includes:
	o KeyVault that will be used to store all secrets (e.g. 

generated database passwords)
	o Storage account that is used to store the linked 

templates ([Micr21])
2.	 The deployment of the entire solution infrastruc-

ture (deploy_world).

These two deployment steps are performed for each 
environment (dev, test, acceptance and prod) with the 
applicable parameters.

CHALLENGES AND LESSONS LEARNED

In the development of the solution, we faced a num-
ber of challenges and issues, which led to a couple of 
insights and additional design decisions:

1. Developing clean deployment templates

As cloud technology is rapidly evolving and new 
features are quickly released, documentation is unfor-
tunately not always up to date or complete. In the 
development of our templates, we sometimes had to 
compensate for missing documentation by searching 
for templates published online, using the ‘export tem-
plate’ for ARM templates in the Azure portal or even 
sniffing API calls to Azure to find out the right way to 
write the templates. Especially these last two options 
can be very tricky and - in some cases - lead to unrelia-
ble templates. Our key takeaways: 
	• Use an exported template for inspiration when 

needed but always write the template yourself. 
This ensures the template is free of ‘clutter’ and you 
understand what is in the template.

	• IaC is (a form of) software engineering. Use an inte-
grated developer environment (IDE) such as Visual 
Studio Code to support and speed up development.

2. Selecting the right modularity of deployments

Just as in designing other software systems, finding the 
right way to modularize infrastructure templates is an 
art in itself. In essence, it is about modularizing where 
it makes sense, and keeping things together that belong 
together. Taking into account software design principles 
such as SOLID ([Mart03]) and concepts such as domain-
driven design, we follow the following principles:
	• a resource group contains resources with the same 

lifecycle

Figure 4. Using nested Azure Resource Manager (ARM) templates to deploy multiple resources.



A reflection on the perceived benefits of Infrastructure as Code46

	• an infrastructure template/script contains resources 
that logically belong together

	• split up large templates in logical building blocks 
where possible

	• limit parameter passing between templates and 
scripts

	• templates can be deployed individually
	• map dependencies explicitly, and do not allow circu-

lar dependencies between templates

3. Avoid deployment anxiety by deploying 
frequently

As described in the first section of this blog, we have 
opted to use a full deployment of the infrastructure 
using a single declarative template. There are several 
reasons why this mechanism can break (over time), for 
example:
	• Application deployments that influence infrastructure 

settings. In our deployment we found that the deploy-
ment of application code in some cases changes 
some application configuration settings that are 
overwritten when the infrastructure is redeployed. 
This can leave the environment in an inconsistent 
state. 

	• Manual actions in the infrastructure that influence 
infrastructure settings. In some cases, manual actions 
are needed in the infrastructure that for some 
reason cannot be automated. In our case we had one 
manual action related to DataBricks that cannot 
be automated (yet). To avoid undoing this manual 
action (and thereby breaking the environment) with 
a redeployment of the infrastructure, we had to 
introduce a workaround in the templates to ensure 
the environment remains stable after redeploying 
the infrastructure.

	• Access permissions or access keys change over time. In 
larger organization access keys and permissions are 
often provided by another team. These dependencies 
on other teams can lead to faulty deployments over 
time (e.g. key expirations or access right changes). 
It is important to acknowledge these dependencies 
and handle them in your code.

	• Other unexpected behavior (e.g. changes in the services 
provided by the cloud platform). This is the concept 
which DevOps engineers fear the most, but in our 
experience this is rarely the actual cause for issues. 

The potential causes for issues above lead to the concept 
of deployment anxiety: losing the confidence of deploy-
ing to (production) environments. Based on our own 
experience, this fear is a serious concern when working 
with infrastructure as Code, even when extensive auto-
mated testing procedures are in place.

Infrastructure configuration tends to stabilize in the 
project, even when the application is under active devel-
opment. This also means that some of the more funda-
mental principles of agile and DevOps with regard to 
Continuous Integration and Continuous Delivery do 
not fully apply. Those concepts work when you deploy 
small changes fast and frequently, supported through 
automated testing. If no changes are made to the infra-
structure for 6 months and therefore no deployments 
have been performed, deployment anxiety tends to 
increase. Deploying frequently reduces deployment 
anxiety, which can be done in two ways:
1.	 Scheduled (Daily/Weekly) deployments of the 

latest (changed or unchanged) version of the code to 
acceptance and production to prove the deployment 
is still valid and effective.

2.	 Combining infrastructure and application deploy-
ments in a single pipeline to ensure infrastructure 
is deployed more frequently.

In both cases, a mature deployment pipeline that 
includes automated testing is required to ensure the 
deployments work and the environment remains stable.

CONCLUSION: IS IAC WORTH THE 
INVESTMENT?

As the challenges described above illustrate, reliable 
IaC implementations are tricky. They require a good 
design based on a clear set of principles and a consistent 
implementation. The question we always try to answer: 
is the added value of IaC implementations worth the 
investment? Many DevOps advocates will undoubtedly 
say yes, but the honest answer is: it depends (we are 
engineers after all).

The first question is which technology provides the 
best value. ARM templates can become quite complex 
to build and maintain, and other technologies such as 
Azure CLI or TerraForm might provide advantages with 
regard to readability and maintainability ([Nabe18]). 
The technology choice is an important one to make 
based on the experience, capabilities and demands of 
your organization.

Reflecting on the two deployment models in Figure 
1, we can evaluate the added value of IaC. In the first 
model, templates can only be used in an initial deploy-
ment. This means that the return on investment is only 
positive when the time saved on initial deployments 
outweighs the IaC implementation cost. In other words: 
how often do you need to deploy new instances of the 
environment or how frequently do you start with a 
fresh environment (e.g. migration)? An example can be 
a cloud competence center that defines standard VM 



Compact 2021 1

templates for all DevOps teams to use. For an applica-
tion with specific templates which is expected to be 
only deployed 2-3 times in its lifetime, designing such 
an initial deployment template is probably not worth 
the investment.

The second model has a slightly different use case. The 
required investment to do this properly is higher, but 
doing it right delivers more value than the first model. 
The return on investment is not only determined by the 
number of times the environment is redeployed, but 
also all the maintenance effort it (potentially) reduces.

Bringing this together there are three main components 
to consider:
1.	 Effort required to build the templates, scripts and pipelines. 

The effort to properly design re-usable IaC templates, 
scripts and pipelines can be quite significant, and is 
often underestimated. Experience and good design 
decisions will reduce these efforts over time.

2.	 Manual maintenance effort reduced through re-use. If a 
template for a virtual machine is used throughout 
a company, using IaC will greatly reduce the time 
required to deploy new infrastructure. If a template 
is specific for one application this is not the case.

3.	 Reduced maintenance efforts and increased stability and 
security as a result of standardization. When properly 
implemented, IaC enforces a level of standardization 
that can lead to reduced maintenance efforts (e.g. 
updating many components at once through a sin-
gle template or pipeline) as well as increased stabil-
ity and security. This does however require a mature 
organization and commitment to work consistently 
according to a set of principles.

In our work, we try to determine the best approach on a 
case-by-case basis, although we do see that experience 
with the second model will reduce the effort for future 
implementations. During this implementation, we 
resolved several complex issues that we will be able 
to take with us in future solutions, reducing the time 
needed for implementation. On the other hand, handing 
over this knowledge to new engineers or teams can be 
difficult.

Regardless of the model you select, make sure you select 
the model consciously, follow a clear set of principles 
and implement it consistently.

References
[Bion19]  Biondic, D. (2019, 25 January). 7 Principles of 

Infrastructure as Code (on Azure and beyond). Retrieved 
from: https://blog.coffeeapplied.com/7-principles-of-
infrastructure-as-code-on-azure-and-beyond-51842e13b00 

[Feda19]  Fedak, V. (2019, 7 October). Infrastructure as Code 
DevOps principle: meaning, benefits, use cases. Retrieved 
from: https://medium.com/@FedakV/infrastruc-
ture-as-code-devops-principle-meaning-benefits-use-cas-
es-a4461a1fef2

[Mart03]  Martin, R.C. (2003). The Principles of OOD. 
Retrieved from: http://www.butunclebob.com/ArticleS.
UncleBob.PrinciplesOfOod

[Micr20]  Microsoft (2020, 17 December). Use Azure Key 
Vault to pass secure parameter value during deployment. 
Retrieved from: https://docs.microsoft.com/en-us/azure/
azure-resource-manager/templates/key-vault-parame-
ter?tabs=azure-cli

[Micr21]  Microsoft (2021, 12 February). Tutorial: Deploy a 
linked template. Retrieved from: https://docs.microsoft.
com/en-us/azure/azure-resource-manager/templates/
deployment-tutorial-linked-template

[Nabe18]  Naber, P. (2018, 11 November). Stop using ARM 
templates! Use the Azure CLI instead. Retrieved from: 
https://pascalnaber.wordpress.com/2018/11/11/stop-us-
ing-arm-templates-use-the-azure-cli-instead/

[Wigg17]  Wiggins, A. (2017). The Twelve-Factor App. 
Retrieved from: https://12factor.net/

About the author
Ir. René Pingen  is a senior manager and cloud architect at 

KPMG. He has a background in computer science and 
performed numerous engagements in the fields of IT 
strategy, architecture, software, cloud and security. René 
has been named Cloud Architect of 2020 by the Cloud 
Architect Alliance.

47Cloud Computing


