
Security principles
for DevOps and cloud
Delivering value frequently
while balancing cyber risk

Many businesses have shifted their mindset towards bringing (software) ideas to customers faster, but security practices struggle to keep up
with the pace. By embedding security principles using the DevOps methodology, companies can become ‘Secure by Design’.

Many organizations across different
sectors are increasing their digitization
efforts, ultimately to deliver their products
and solutions faster to the market. The
technology, quality and, especially, the
security functions struggle to keep up with
the pace. While traditional organizations
have difficulties moving their
heterogeneous IT landscape to the cloud,
less traditional technology-oriented
companies struggle to embed security as a
process in their development lifecycle, as
they perceive it to impair their valuable time
to market. Rather than implementing
security as a stage gate at the end of the
development and operations lifecycles, it
should be a continuous process through the
value delivery stream. This should
ultimately help position the security
function as a business enabler.

Martijn Sprengers MSc
is Senior Manager at KPMG
Netherlands.

sprengers.martijn@kpmg.nl

Wouter van der Houven MSc
is Consultant at KPMG
Netherlands.

vanderhouven.wouter@kpmg.nl

Security principles for DevOps and cloud 40

INTRODUCTION

Agile Methodology, Continuous Integration, Con-
tinuous Delivery, SecDevOps, DevSecOps. All terms
that describe a change in mindset towards bringing
(software) ideas to customers faster. Lately, organi-
zations are adopting ways to increase the speed of
development even further by composing teams with
both development and operation engineers (DevOps
teams) ([Brum19]). This rapid deployment of changes
to production environments has security practices
struggling to keep up with the pace. This, combined
with the cloud transformation of the past decade, has
led to rethinking security principles and dealing with
risks ([Stur12], [Beek15]). However, these are mostly
focused on the risks that are associated with bringing
your IT and data to the cloud, rather than maintain-
ing a sufficiently secure state of solution delivery in
these rapidly changing environments.

This article addresses some of the key challenges that
organizations face when applying this shift in mind-
set towards DevOps, and how to deal with those in a
cloud-enabled world. Rather than focusing on how to
directly control the technical risks, we will address
how to apply security principles in the development
process to deliver value faster while meeting security,
privacy, and compliance needs.

In order to arrive at these security principles, we will
first address the DevOps principles and how, in com-
bination with cloud technology, these can be used to
achieve an unparalleled time to market. We will then
address how a secure state can be achieved and main-
tained with a combination of DevOps principles and
elements of the application development lifecycle.

ORGANIZING DEVOPS

DevOps is all about organizing three basic principles
which we will briefly outline below ([Hütt12], [Kim14],
[Kim16]):
1.	 The principle of flow. This principle emphasizes

the performance of the system, instead of the per-
formance of a specific subprocess, department or
individual contributor (e.g., a developer, system
administrator). It should focus on all value streams
that IT delivers, from requirement identification,
development, testing, transition to operations and
delivered to end-users and customers.

2.	 The principle of feedback. This principle is about get-
ting feedback as soon as possible in the software devel-
opment lifecycle. Developers and practitioners refer
to this as ‘shifting left’: the earlier you detect an error
or issue, the more inexpensive it is to fix the issue.
The goal is to shorten and increase feedback loops so
necessary corrections can be continually made.

3.	 The principle of learning. This principle focuses on
creating a culture for continual experimentation, tak-
ing risks and learning from failure. ‘Fail fast’ and ‘fail
often’ are key terms to this principle, yet very hard to
get right in practice. This also includes making the
team responsible for their successes and failures and
providing enough means to grow.

Many organizations have adopted this way of working.
However, the principles themselves do typically not pro-
vide practical recommendations on how to organize secure
development processes. Research has been conducted
on applying these principles in practice, for example
through implementing ‘Continuous Integration’ ([Fowl16],
[Duva17]) and later ‘Continuous Delivery’ ([Humb10]). Also,
organizations have embraced agile development processes,
such as ‘SCRUM’ ([Schw02]), following different maturity
levels ([Lepp13]). Although these principles provide some
guidelines, we still see that many organizations struggle
to embed security in the development process, to become
so-called ‘Secure by Design’.

CLOUD SECURITY OPPORTUNITIES

Utilizing cloud technologies and shifting towards a
DevOps organization go hand in hand. New cloud devel-
opments like serverless computing and Infrastructure as
Code have impacted organization’s security landscape in
the same way DevOps organization has by blurring lines
between the development and operations of solutions. As
a result, organizations now have a myriad of opportuni-
ties to use new (security) capabilities and technologies.
The following (non-exhaustive) list provide an overview
of principles that could help improve cyber security (see
Table 1).

Table 1. Cloud principles that can help improve security in a DevOps
environment.

Serverless computing The cloud provider manages underlying infrastructure
such that users can focus on writing and deploying
code.

Infrastructure as Code The cloud provider manages underlying infrastructure
based on (templated) code written and deployed by
DevOps engineers.

Security
Centralization

Leveraging data-output of the cloud provider’s
security capabilities to get a holistic view on the
security posture.

Cyber Security & PrivacyCompact 2020 1 41

Serverless computing

With the introduction of the cloud, the respective cloud
providers are responsible for the (security of the) ser-
vices that they offer which reduces the total ‘security
surface area’ that the organization’s security experts
need to manage themselves. The usage of ‘Infrastruc-
ture as a Service’ (IaaS) and ‘Platform as a Services’
(PaaS) patterns allows organizations to better focus on
their key strengths, rather than managing the complex-
ities of hardware and software. Serverless computing
concerns this transfer of responsibility for part of the
security surface in solution development, such that
users can focus on writing and deploying code. This
helps reduce the risks associated with managing infra-
structure components, such as data centers, virtual
machines, databases and configuration of (network)
components. For example, KPMG Digital Risk Platform’s
architecture is entirely constructed with serverless
components, drastically reducing the overhead of patch-
ing and configuration management.

Infrastructure as Code

This is the process of managing and provisioning software
and hardware configuration through machine-readable
definitions, rather than error-prone manual and interac-
tive provisioning through configuration tools ([Arta17]).
Infrastructure as Code can be used for platform as well
as infrastructure components. All major cloud providers
support this process. Another advantage is that the (changes
to) definitions can be treated as code. This allows for man-
aging changes to the infrastructure in the same way, with
the same tools as managing changes to regular (application)
code, using known software best practices for designing,
implementing, and deploying applications infrastructure.
Deployments are therefore less error-prone, the environment
is more homogeneous and security configurations can be
managed as part of the regular secure development lifecycle.

Security centralization

Cloud environments allow for security capabilities such
as encryption, key management, privileged identity man-
agement, auditability and security monitoring to be cen-
tralized. Although organizations tend to view this as an
increased risk (i.e. “one place to rule them all”, [Moll19]),
it provides more visibility, opportunities for automation
and simplicity. Leveraging the economy of scale, every
security requirement brought forward by another cloud
customer can improve the security of the overall cloud
provider, as these provides have a major incentive to keep
the cloud secure. Centralization in a cloud also allows
to connect platforms like Azure DevOps, Gitlab and
Atlassian to easily track work, collaborate on code and
integrate continuous deployment. This greatly improves

transparency and allows development and engineering
teams to focus on the DevOps principles.

CLOUD AND DEVOPS SECURITY
CHALLENGES

On the other hand, we also see organizations struggle
with the overwhelming possibilities that cloud envi-
ronments and new development methodologies offer in
relation to security. Table 2 lists some examples.

Security as a stage gate

We see that organizations are trying to put all risk-miti-
gating activities at the end of the ‘development process’,
leading to feedback that is obtained only at the end of the
software development lifecycle. This decreases the flow
as it will take longer to follow up on the identified bugs
and issues than when they would be detected earlier in
the development process. In traditional companies with
many legacy systems this results in delays in IT projects,
as the security function of the organization is over-
whelmed with activities to complete the security ‘stage
gate’ at the end of the project.

Get overwhelmed with the output and feedback
of security solutions

Although cloud environments provide new tools and
methodologies, we see organizations struggle to use
them adequately. All three major cloud providers (Ama-
zon, Google, Microsoft) provide many security solutions,
ranging from DDOS protection to threat and vulnerabil-
ity monitoring. However, more monitoring capabilities
do not necessarily improve security. As these solutions
typically report many non-compliances, potential risks
and incidents, activities such as triage, false positive

View ‘security’ as a
single stage gate

We see organizations trying to put all risk mitigating
activities at the end of the ‘development process’
majorly impacts the ‘DevOps’ flow.

Get overwhelmed
with the output and
feedback of security
solutions

As security solutions typically report many non-
compliances, potential risks and incidents, activities
such as triage, false positive reduction and follow-up
require time and effort.

Failure to keep up with
the speed of business

New tools and methodologies allow teams to rapidly
develop, modify, and deploy new solutions towards
production environments, while security practices are
struggling to keep up with the pace.

Use ‘time to market’ as
an excuse

Security challenges in keeping up with the speed of
business are often addressed with the excuse that
‘time to market’ is the primary priority, resulting in
security measures being postponed.

Table 2. Typical security challenges while implementing DevOps.

Security principles for DevOps and cloud 42

reduction and follow-up require time and effort. Deter-
mining what is actually important requires a sound
threat model. With many potential risks reported by
these solutions, companies fail to determine the actual
business risk of potential security issues and vulnerabil-
ities, thereby typically focusing on the wrong corrective
actions and behaviors. Some examples are:
	• Failure of the solutions to understand business con-

text, reporting vulnerabilities in development envi-
ronments that are segmented from the production
environment as ‘critical risks’;

	• Failure to understand usage patterns and behaviors,
such as reporting the shared use of test accounts as
impersonation attacks;

	• Failure to understand the application or environment
context, such as reporting licenses that are used in
test tools (which are not distributed to end-users) as
‘policy violations’.

We have seen clients that struggle with this output vol-
ume, particularly when they have many cloud security
solutions that run frequently. Typically, these solutions
report thousands of potential (high risk) security issues,
while only few of them really affect the business conti-
nuity.

Failure to keep up with the speed of business

We see IT functions struggle with the opportunities
cloud environments provide. Due to the lack of business
understanding, business and IT goals are diverging.
Where IT functions try to keep the application portfolio
to a minimum, with increased control, business users
often procure and use their own IT. They praise the flex-
ibility, frequency of functionality updates and possibil-
ities of (cloud) Internet services. A credit card is usually
enough to buy an application or server. An example is
dealing with so-called ‘shadow IT’ ([Kuli16]): applications
that are used by business users that are not or very little
under the control of IT functions. Examples are market-
ing outings via servers not controlled by IT, sending sen-
sitive to cloud storage providers and connecting business
identities with third party applications.

Use ‘time to market’ as an excuse

We have seen organizations that are quite capable of
implementing the principle of flow but lack the appro-
priate checks and balances for security. Typically, they
perceive time-consuming and compliance-driven
security controls as an impediment to their time to
market and execution speed. Frequently delivering new
versions to end users is considered valuable. However,
it must be done in accordance with a clear risk appetite
and a sound associated threat model. We acknowl-
edge that trying to cover all potential security risks is

time-consuming, and often also undesirable as it always
comes with a tradeoff (e.g. with usability). For example,
patching a specific API endpoint that allows for SQL
injection can take quite some developer resources. If
this endpoint is only reachable by administrators and
only after a two-factor authenticated login, it greatly
reduces the attack surface and probability of a success-
ful exploitation by an unauthenticated user. If this is in
line with the company’s risk appetite, it can be decided
not to patch and continue the deployment. Three impor-
tant elements play a role here:
	• Major stakeholders, such as the board of manage-

ment, should have set a sound risk appetite.
	• DevOps teams should be aware of this risk appetite

and how they can apply its boundaries in practice.
	• DevOps teams and stakeholders should be aware of

the (potential) risks that are present and the risks
they would like to take. Organizing risk manage-
ment is beyond the scope of this article, we refer to
other resources that are available (such as [Baut19]).

ORGANIZING SECURITY CAPABILITIES IN
THE DEVELOPMENT LIFECYCLE

Organizations can apply security principles in the
development and operation processes to deliver value
faster, while also leveraging the benefits of cloud
transformation. As cloud infrastructure is commonly
continuously developed, a shift from manual processes
to automated controls is required in order to maintain
a consistent security posture while still maintaining
frequent value delivery.

Furthermore, the infrastructure itself also changes.
Application development produces not only an applica-
tion, but also the underlying infrastructure and con-
figuration thereof. This includes e.g. virtual machines,
firewalls, databases, etc. Developing new infrastructure
introduces the requirement to enroll in other security
capabilities like monitoring, networking (VNet, WAN,
VPN, DNS) and delivery (CDN, Load balancers, Applica-
tion Gateways).

We will, based on the phases in the DevOps process, dis-
cuss how to embed security principles and capabilities.
Figure 1 fairly represents common steps in secure devel-
opment lifecycle process.

Plan

As many of the security issues originate from human
failure, it is important to enable DevOps engineers with
the right knowledge and tools to make risk decisions as
early in the software development lifecycle as possible,
i.e. during the ‘plan’ phase. An important aspect is to

Cyber Security & PrivacyCompact 2020 1 43

make the team itself responsible for security, not just the
IT security function or team in the organization. This
requires that developers are allowed to take security
training. Also, the (traditional) security function should
provide modern product management and engineering
disciplines (such as Product Owners) with advice and
recommendations during the planning of functionality.

In addition to the functional requirements set for
an application iteration, it is also necessary to define
non-functional requirements, such as:
	• performance and availability requirements;
	• code quality and license requirements;
	• data confidentiality and integrity requirements; and
	• personal identifiable information requirements.

All of these require the stakeholders and business owners
to agree on the risk appetite of the software, based on
threat modeling, usage of the software, reputation, and the
type of data being stored. This is all about reviewing risk
scenarios. For example, fixing a SQL injection vulnerabil-
ity in a part of the application only accessible to functional
administrators could have less priority than replacing
code that introduces a license infringement, as legal and
reputational damages can directly impact the business.

Code

A very important step during the ‘Plan’ and ‘Code’ phases
is the validation of requirements by the developers. In
agile development methodologies this is called the ‘refine-
ment’: meetings in which developers demonstrate their
understanding of the requirements (e.g. features, product
backlog items) to be implemented to the product owner
and/or business analysts. This is an ideal place to discuss
potential security and privacy aspects/impact of the
(non-)functional requirements, as new functionality also
always introduces additional attack surface. Discussion
thereof fosters ownership of issues and makes all parties
involved work towards solutions that are acceptable to all.
This should help developers gain a better understanding
of the context and ‘shift left’ security activities: during the
implementation of code they need to be informed about
potential issues (such as security bugs) as early as possible.

Build and Test

In order to uphold the (non-)functional requirements
set out in the previous stages of application develop-
ment, testing and failing to pass tests must happen as
early as possible in the development process. To work
towards this goal, various types of tests can be exe-
cuted in an automated fashion, both during and after
the ‘build’ phase.
	• Static Application Security Testing (SAST) and

Dynamic Application Security Testing (DAST)

([Gold19]) identify and address issues in propri-
etary software, such as bugs, potential security
flaws, code coverage, code quality and technologi-
cal debt.

	• Software Composition Analysis (SCA) covers the
identification of open source components with
known vulnerabilities and potential license
infringements in imported libraries.

	• Implementing Security Monitoring in critical
flows of the application, as identified in the
requirements and design phases to improve inci-
dent response, and forensic capabilities as well as
auditability of the application.

Also, developers should be encouraged to participate
in offensive security activities against their own
environment and developed code. The understanding
of circumstances that introduce security vulnerabili-
ties can help developers anticipate and solve security
issues beforehand. Usage of security tools, such as
OWASP ZAP, Burp, Nikto and Metasploit by developers
is encouraged in order to facilitate the automation
of security testing in the development process. But
remember: “a fool with a tool is still a fool”.

In the ‘test’ phase, the development team validates if the
software build matches the requirements. A so-called
‘Pull request’ is one of the most important security
measures in this phase, as it brings together all elements
of performing risk assessment: product backlog items or
user stories with the requirements, trackable/auditable
work through work items, code and commit messages,
results of the tests and Static Application Security Test-
ing (SAST). We have depicted an example flow of the Pull
Request in the picture.

A crucial element of the pull request is a peer review by
another developer. However, to be properly executed, the
IT staff involved in the pull request should have suffi-

Figure 1. The DevOps lifecycle ([Otey18]).

test

release

deploy

operate

bu
ild

code
plan

monitor

Dev Ops

Security principles for DevOps and cloud 44

It is important that the business stakeholders can make
an informed security decision. The attack surface should
match the threat model and risk appetite set forth during
the ‘requirements’ phase. Any residual risks of operation
should be addressed through the definition of an incident
response plan.

After approval, the release and release approval are
archived to help create an auditable trail from the defini-
tion of requirements to production release.

Deploy

When a release is approved by the relevant stakeholders,
the changes should be pushed to the production envi-
ronment. This is called the ‘deploy’ phase. A great way to
minimize the amount of errors, is to maximize automa-
tion. Modern cloud environments support the config-
uration of automated release pipelines that build upon
the principle of Infrastructure as Code. This ensures
that the infrastructure required to run the application
is launched and configured through predefined scripts,
which in itself can be treated like any other application
change. An important security aspect during the ‘deploy’
phase is to ensure environments (such as development,
test and production environments) are separated through
the usage of ‘key vaults’. These vaults store the secrets
(such as password and keys) of the application and under-

Use your cloud
transformation to balance

security activities and
budget with time to

market

Define Non-functional
requirements

Technology
Team

Development
Team

Define SonarCloud
Profiles

SonarCloud
Quality Gate Master

Develop

Release Manager
Approval

Code Peer
Review ProductionPull Request

Build Validation

Are work items
attached?

Comment
Resolution

Passed

Approve
d

Ye
s

Ye
s

Approved

Yes

Yes

cient security knowledge to make the decision. Only if all
criteria are met, will the newly developed code be propa-
gated towards the main branch (i.e. ‘master’ in Figure 2).

Release

The final step before pushing changes to production
environments is the release phase. This includes the final
security review, in which the risks associated with the
deployment of changes are assessed by the business, given
the defined (non-)functional requirements and test results.

Figure 2. Example approval process for deploying code to production, used in KPMG’s Digital Risk Platform.

Cyber Security & PrivacyCompact 2020 1 45

lying infrastructure and can be automatically populated
and used in a deployment pipeline.

Operate

The operate phase involves maintaining and trouble-
shooting applications in production environments. The
DevOps teams maintain roles such as ‘designated respon-
sible individuals’ and ‘site reliability engineers’ to ensure
system reliability, high availability and performance
while reinforcing security. They try to identify issues
before these affect the end-user experience and respond
to issues quickly when these occur.

Monitor

Given the defined (non-)functional requirements, oper-
ational and monitoring use cases can be defined. By
implementing monitoring, a production-first DevOps
mindset is fostered and impact on end users can be lim-
ited by taking proactive actions. Impact can be evaluated
through observation, testing, analysis of telemetry, and
user feedback. This then feeds the ‘plan’ phase of the next
iteration of product development in the DevOps process.

CONCLUSION

Organizations need to balance security activities and
budget with time to market and user friendliness. Cloud
transformations can help with embedding security
principles and solutions, especially if these are imple-
mented through the DevOps principles. Moving to the
cloud is also a good opportunity to embed cyber secu-
rity in daily processes such that organizations get more
‘secure by design’. We have discussed common pitfalls in
implementing cloud security solutions and have provided
security principles and activities that can be embedded
in (agile) development processes. The key take-away is
to make the DevOps engineers feel responsible for the
security decisions they take during development and
provide them with the means and mandate to do so. This
should help organizations to better balance security and
usability, while still maintaining the ever increasing need
to deliver value faster.

References
[Arta17]  Artac, M. et al. (2017). DevOps: Introducing Infrastructure-as-Code. 2017

IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C), 497-98.

[Baut18]  Bautista, M.C. & B. Krutzen (2018). Digitization of Risk Management.
Compact 2018/2. Retrieved from: https://www.compact.nl/en/articles/digitiza-
tion-of-risk-management/

[Beek15]  Beek, J.J. van (2015). Assurance in the Digital World of the Future. Compact
2015/Special. Retrieved from: https://www.compact.nl/en/articles/assurance-in-
the-digital-world-of-the-future/

[Brum19]  Brummelen, J. van & T. Slenders (2019). Modern Software Development.
Compact 2019/2. Retrieved from: https://www.compact.nl/articles/modern-soft-
ware-development/

[Duva07]  Duvall, P.M. et al. (2007). Continuous Integration: Improving Software Quality
and Reducing Risk. London: Pearson Education.

[Fowl06]  Fowler, M. et al. (2006). Continuous integration. Thought-Work, 122, 14.

[Gold19]  Goldstein, A. (2019, May 23). SAST vs. SCA: It’s Like Comparing Apples to
Oranges. Whitesource Software. Retrieved from: https://resources.whitesourcesoft-
ware.com/home/sast-vs-sca

[Howa06]  Howard, M. et al. (2006). The Security Development Lifecycle. Redmond:
Microsoft Press Redmond.

[Humb10]  Humble, J. et al. (2010). Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. London: Pearson Education.

[Hütt12]  Hütterman, M. (2012). DevOps for Developers. New York: Apress.

[Kim14]  Kim, G. (2014). The Three Ways: The Principles Underpinning DevOps.
Portland: IT Revolution Press.

[Kim16]  Kim, G. et al. (2016). The DevOps Handbook: How to Create World-
Class Agility, Reliability, and Security in Technology Organizations. Portland: IT
Revolution.

[Kuli16]  Kulikova, O. (2016). Cloud Access Security Monitoring: To Broker or Not
To Broker? Compact, 2016/3. Retrieved from: https://www.compact.nl/articles/
cloud-access-security-monitoring-to-broker-or-not-to-broker/

[Lepp13]  Leppanen, M. (2013). A Comparative Analysis of Agile Maturity Models.
Information Systems Development, 329-343.

[Moll19]  Mollema, D. (2019). Syncing yourself to Global Administrator in Azure
Active Directory. Fox-IT. Retrieved from: https://blog.fox-it.com/2019/06/06/
syncing-yourself-to-global-administrator-in-azure-active-directory/

[Otey18]  Oteyowo, T. (2018, April 12). DevOps in a Scaling Environment. Medium.
Retrieved from: https://medium.com/tech-tajawal/devops-in-a-scaling-environ-
ment-9d5416ecb928

[Schw02]  Schwaber, K. et al. (2002). Agile Software Development with Scrum. Upper
Saddle River: Prentice Hall.

[Stur12]  Sturrus, E., Steevens, J. & Guensberg, W. (2012). Access to the cloud.
Compact 2012/0. Retrieved from: https://www.compact.nl/en/articles/access-to-
the-cloud/

[Tunc17]  Tunc, C. et al. (2017). Cloud Security Automation Framework. 2017
IEEE 2nd International Workshops on Foundations and Applications of Self* Systems
(FAS*W), 307-312.

About the authors
Martijn Sprengers MSc  is head of Technology at KPMG’s Digital Risk Platform, a

SaaS solution to digitize and automate risk functions in organizations. Martijn
was an IT security advisor at KPMG Netherlands before. He has over ten years of
experience with technical facets of cyber security.

Wouter van der Houven MSc  is an IT security advisor at KPMG Netherlands. He
has over two years of cloud security experience. He developed and automated
the security controls for KPMG’s Digital Risk Platform.

