
Organizations across different sectors and industries are going through an increase in digitalization efforts. The technology function often
struggles to keep pace with the ever-increasing scale of new demands in today’s business environment. Modern product management, engi-
neering, and delivery discipline are needed to be able to keep up and face these challenges. To ensure quality across the value chain a ‘left shift’
mindset is needed.

Software Quality 9

Modern Software
Development

Tom Slenders MSc
is a senior consultant at KPMG
Digital Enablement in the
Netherlands.

slenders.tom@kpmg.nl

drs. Jos van Brummelen
is a senior manager at KPMG
Digital Enablement in the
Netherlands.

vanbrummelen.jos@kpmg.nl

It is all about quality
and speed

Organizations across different sectors
and industries are going through an
increase in digitization efforts. The
technology function often struggles to
keep pace with the ever-increasing scale
of new demands in today’s business
environment. Modern product
management, engineering, and delivery
discipline are needed to be able to keep
up and face these challenges. To ensure
quality across the value chain a ‘left
shift’ mindset is needed.

Organizations have
massively adopted agile

frameworks and methods
to further integrate

business and IT functions

Modern Software Development10

INTRODUCTION

Organizations across different sectors and industries are
going through an increase in digitization efforts. The
technology function often struggles to keep pace with
the ever-increasing scale of new demands in today’s busi-
ness environment. After all, it must keep up with market
speed; address rising expectations for ease and availabil-
ity of technology by the business; take advantage of new
opportunities and evaluate issues of risk.

Modern product management, engineering, and deliv-
ery discipline are needed to be able to keep up and face
these challenges. Organizations have massively adopted
agile frameworks and methods to further integrate
business and IT functions. Transformed organizations
have become collaborative, cross-functional, highly
automated, innovative, self-managed, and productive
by adopting a set of practices such as value stream map-
ping, Design Thinking, Lean, Agile, and DevOps. These
practices are no longer mere buzzwords; they are proven
principles and mindsets that empower organizations to
realize value through improved performance, profitabil-
ity and market share.

When software product development is at the heart,
establishing fit-for-need software development processes
are key in staying ahead of the game, as well as being able
to continuously deliver high-quality products, at low risk.

This article describes the way modern product-driven
organizations structure and further integrate their end-
to-end software delivery processes.

The ever-changing world of the IT function

The business world is under increasing demands for agil-
ity and speed. Advancements in technology have enabled
the way we do business and allowed some to gain com-
petitive advantage. However, business is still not always
getting the desired speed. There are several reasons for
this fault.

One reason is that consumer behavior, both from the
external market as well as internal stakeholders, has
changed over the past five to ten years in most industries.
Customers today are accustomed to highly available,
constant-release, high-value applications that are con-
sumable anywhere, anytime and on any platform. This
consumer buying behavior drives organizations to adapt
their strategies, both internally and externally. The way
most corporate technology is delivered is insufficient
to be able to catch up with these advancements. Some
reasons for this are the large amount of technical debt
(legacy systems), monolithic systems that are difficult
to build upon, and applying a slower waterfall approach
to software development. Furthermore, long cycles of
annual financial planning processes and siloed organi-
zational functions prevent adopting a customer centric
approach for product design. We also see that traditional
technical solution development no longer solely belongs
to the IT function within organizations.

Organizations are facing an increasing dissatisfaction
with the lack of speed and flexibility in their IT func-
tions, to the point where business consumers go else-
where. Especially as the barrier to entry to acquire and
deploy their own solutions from Cloud or SaaS providers
is much lower. This availability means that businesses in
organizations bypass the IT departments more often and
start implementing their own decentralized IT solutions
(so called shadow IT).

Finally, as the business dives into solution development
outside of the central corporate IT function, organiza-
tions are beginning to understand the ripple effects of
today’s fast-evolving technologies and the quality impact
of poorly controlled releases. These include implications
to architecture, data management and privacy, access
control, but also effects in areas like financial planning
and supplier management. As these elements come into
play, the overall risk to the enterprise grows.

To an increasing extent, it will become a balancing act
between speed and risk while also putting the customer
at the center of the value chain. A more holistic view of
technology development is needed. This change in focus
requires a solid end-to-end product development process
supported by all functions of the organization.

Organizations are
facing an increasing
dissatisfaction with
the lack of speed and
flexibility in their IT
functions

Software QualityCompact 2019 2 11

A holistic end-to-end view of software (product)
development

Regardless of which framework or method is being
followed, product development – in the end – is about
creating value for the end customer. Empathizing with
the end user and creating a deeper understanding of the
end user is not always the number one priority however
when it comes to developing new software products.

For the last few decades, the focus around new IT devel-
opments were primarily on specialization and improv-
ing operational excellence. This scenario is where the
traditional waterfall processes excelled: how – from an
IT perspective – to design the best possible architecture
and realize the most optimal design. But also – given
the agreed upon design – how to make the actual soft-
ware development process as efficient as possible for the
developers and testers involved. Only after development
was done, the user came into play again to test the actual
result. The service support and maintenance teams came
last in line. These teams typically had a completely differ-
ent focus: keeping the running environments as stable as
possible while keeping costs low. Most of the time, due to
budget cuts, they needed to keep things up and running
at a lower cost every year.

Even though concepts like Lean Product Development
and Design Thinking had existed for years already, these
approaches were mostly used in the very early stages of
the design process; well before the actual software design
phase started.

With the establishment of the Agile Manifesto [Fowl00]
in 2001, the product development mindset started slowly
changing to an incremental approach. From this period
onwards, an agile approach (like Scrum) has become
the new normal. This first wave of agile software devel-
opment practices was mainly focused on the internal
alignment between business team members and IT
functions. As a result, software development was more
focused on creating Minimum Viable Products (MVP’s)
in short iterations, leading to a value thinking mindset
and a shorter time to market.

When multiple teams needed to be involved for creating
a releasable end product, the Agile scaling frameworks
(like the Scaled Agile Framework, Large Scale Scrum
or the Spotify culture) gained popularity, also focusing
more on the so-called Lean-Agile mindset. All these
frameworks put more emphasis on creating actual
product-driven organizations, whereby the identification
of the value streams in the organization (a concept that
Lean already introduced in the early days) became a main
driver for the new target operating model of organiza-
tions ([Cool18]).

At the same time, all these models had not yet fully
fulfilled the promise of maximizing the efficiency of a
project. Further integration across development and oper-
ations teams was still a hurdle to overcome. This led to the
creation of a philosophy called DevOps. The main goal of
DevOps is to unite software development with infrastruc-
ture operations into a single operating model through
collaboration and communication, emphasizing frequent
and fast software deployments. Four main aspects of
DevOps that are at the heart of this philosophy are collab-
oration, automation, measurement, and monitoring.

DevOps is often used as an umbrella term to describe
software development approaches with the aim of
increasing the pace of software development processes

Modern Software Development12

and improving software quality. DevOps has been
referred to as many different things among which a
movement, a philosophy, a (development) practice, a
mindset or a culture. Seen from a development practice
perspective, the focus was always primarily on IT-related
matters. It was about breaking down the traditional silos
of IT agility by integrating engineering, testing, and oper-
ations into full stack teams, automating large portions of
the value chain, and creating a culture of collaboration
focused on customer outcomes.

More holistically, DevOps can be described as a move-
ment with the goal of becoming “better” and “faster”.
It brings the word “continuous” to the center stage of
agile development and is, in fact, adopting a continuous
everything model that, in a way, is fixing the promises
that agile (frameworks) once made about delivering
customer value faster.

While many frameworks for agile software development
exist, these frameworks do not cover the full extent of
agile and DevOps combined. For many organizations, it
is the successful combination of these approaches that
will in the end lead to success. In the next paragraphs, we
describe a typical modern software delivery approach to
be able to speed up the delivery process, also ensuring the
delivery of continuous high-quality products.

Better, faster and more transparent: a typical
modern delivery approach for software
development

Modern delivery approaches for software development
focus on the entire value chain, combining a mixture
of Design Thinking, Lean, Agile and DevOps practices.
The combination of these concepts provides a full scope
of the project; sometimes referred to as “from concept to
cash”: from initial idea up until gathering data about the
end product in a live environment, whereby development
is done in short iterations and product releases are done
frequently. For some organizations, this means delivery
every few weeks, but for an increasing number of compa-
nies this means releasing new functionalities to the end
clients, multiple times a day.

In Figure 1, a typical approach to modern software
development is shown. The actual solution development
can be segregated into three different iterations that are
intertwined. During Discovery, the need of the customer
is identified. These needs are then implemented in the
Development iteration, after which during Delivery the
value is actually delivered to the client. All three phases
consist of short iterations to keep the feedback cycles
as short as possible to ensure the value delivered still
matches the actual need of the client. Dependent on the
ambition level, this flow of activities can take a couple of
weeks, but in certain occasions only a couple of days.

During Discovery, the focus will be on the identifica-
tion of the actual need. Then, the short- and longer-term

Figure 1. A typical modern delivery approach for software development.

Early exit

Early exit

One-time
result

Early exit or
One-time result

Decommissioning

Value
Discovery

Requirement
Management

Testing

Experimentation

Solution
Development

Ideation
Monitoring

Infrastructure as Code

Business
Implementation

Value
Development

Value
Delivery

Software QualityCompact 2019 2 13

roadmap is identified by selecting and prioritizing
the right ideas and client wishes. In the early stages of
product development, aspects like ideation and experi-
mentation play a major role, empathizing with the (end)
customer and collaborating and testing new ideas and
insights. Design Thinking and rapid prototyping tech-
niques are most of the time valuable sources for inspi-
ration. Sometimes, as part of the architectural runway,
small technical experiments will be executed as well to
research technical feasibility of the possible solutions
identified.

When the product is already in a more mature state, the
focus of this stage will be more about identifying smaller,
incremental improvements that can be taken from the
actual use of the product. Collecting data about the
actual use of features (see Delivery) can be a very valuable
source for this.

During Development, the focus will be on the actual
development and testing of the proposed functionalities.
As organizations strive to deliver more frequent, this
requires a high level of automation of the development
pipeline to be able to achieve both speed as well as ensur-
ing quality. Therefore, development teams are constantly
working on optimizing their development factories to
enable automation. To ensure speedy development, mak-
ing use of Continuous Integration practices are key. Build
automation ensures that source code created by multiple
developers is integrated correctly. Test automation in
these pipelines is the only solution that can provide the
risk mitigations that are needed to deliver new function-
ality at speed. To ensure that security standards are met,
many case aspects like security testing are also highly
automated.

Value Delivery
The purpose of Delivery is to actually deliver the result
to the end user. In doing so, deployments need to be
automated as well to increase their speed and quality. A
straightforward and repeatable deployment process is
important for what is called Continuous Delivery. This
means that infrastructure changes are considered part of
the delivery process. This concept is often referred to as
Infrastructure as Code (IaC), the management of infra-
structure (networks, virtual machines, load balancers,
and connection topology) in a descriptive model, using
the same versioning that a DevOps team uses for source
code. This consistency is not only beneficial for speed, but
also provides more reliable deployments and thereby also
improving compliance.

After software has been deployed, measurements are exe-
cuted in the live environment to proactively monitor the
application performance as well as to gather information
about the actual usage by the end users. All this informa-

tion can be used to detect issues as early as possible, or
can be fed back to the Product Owners to better adapt the
product to the needs of the users.

By integrating significant parts of the development process
and by creating small cross-functional teams, most organ-
izations today are better capable of delivering business
value much faster. Also, as a result of the smaller deliveries,
the risk of failure is reduced as the number of different
components affected is generally much smaller. Because
there is also a lot of focus on rollback scenarios in case of
any mistakes or errors during development, the smaller
deployment size also has a positive effect on the time for
recovery. The combination of these results in lower risk of
releases and promotes courage within teams to experiment
more often. This in turn empowers the Discovery phase
which creates a positive continuous feedback loop.

To be able to come to a good end-to-end process, it is key
to have the right foundations. On the one hand, this will
require a well governed and agreed upon process that
allows room for continuous improvement and continu-
ous learning. On the other hand, aspects like culture and
attracting and developing the right talent are indispen-
sable, a prerequisite for success. Figure 2 outlines all the
detailed elements of this lifecycle.

Ensuring quality across the value delivery chain

As discussed in the previous section, there are a lot of
different aspects to keep in mind that can influence
the quality of the actual output. Keeping the goals of
becoming “better” and “faster” in mind, there are a couple
of aspects that, from a software quality perspective, are
relevant:
•• In an agile world where development is done itera-

tively, it becomes a necessity to automate significant
parts of the workflow to be able to deliver iteratively

An important aspect
in any organization
is to detect possible
issues in the software
development lifecycle
as early as possible

Modern Software Development14

Release
Automation

IT Service
Management

Release
Management

Process

Continuous
Integration

Artifact
Management

Build Metrics

Service
Resiliency

Service
Virtualization

Cloud
Enablement

Alert
Notification

Risk Controls

Automated
Testing

Test Data
Management

Testing Practices

Analytics &
Telemetry

Usage Metrics

Event Logging,
Detection &

Report
Diagnostics,

Feedback

Analytics &
Telemetry

Continuous
Deployment
Deployment

Orchestration

IT Change
Management

Configuration
Management

Healt check &
Rollback

Deploy
Environment
Provisioning

Developer Toolset

Source Control
Management

Local Environment
Provisioning

Design &
Prototype

NFR

Culture, Organization & Talent

Governance

Discovery

IDEATE PLAN CODE BUILD TEST RELEASE DEPLOY RUN / OPERATE MONITOR

Development

Components of the Value Delivery Chain

Delivery

Security

Product/Service
Ownership

Solution
Roadmap

Selection and
Prioritization

Resource &
Capacity

Management
User Stories and

Sprint Planning

Business
Demand

Product vision,
Goals,

Succes Criteria
Design Thinking
Design Sprint(s)

Validate &
prioritize insights

Requirements
Management

Architectural
Runway

the right’, so very late in the life cycle. Especially for test-
ing integration elements as soon as possible this mindset
provided value. By moving things to the left, meaning
to start testing as early as practical, software quality has
many times improved significantly.

As an initial concept taken from the testing world, the
shift left approach became a must do in any agile soft-
ware development project. The shift left approach has
been embraced further and became a major driver of inte-
grating operations into the life cycle. Only by automating
big parts of the operational activities, real speed can be
achieved, and quality levels can be guaranteed. By inte-
grating development and operations even further, the
development teams were able to release more frequently.

From our point of view, the shift left mindset can be taken
much further, already in the early stages of design. Many
industry studies show what happens when a team does
not fully understand the business needs and the associated
requirements. In fact, some estimates show that more
than 35% of software projects fail due to poor require-
ments or the lack of proper user involvement ([Huss16]).

Bringing integrated approaches like Design Thinking
into the overall process means that not only controlling
the quality of the actual work that is delivered can be
included into the value delivery chain; “garbage” is also
not allowed in. Starting off with a good ideation and pro-
totyping phase provides more certainty than the devel-
opment of the right functionality. The risk of human

and this importance intensifies when the release
frequency is increased.

•• Ensuring quality means taking an end-to-end view
of the entire software development lifecycle. Starting
from gathering the initial requirements to learning
about the actual product that is running in a live
environment. This quality focus also means consid-
ering that security, audit, and compliance processes
need to be an integral part of the delivery cycle.

•• Learning from past experiences and making opti-
mal use of the feedback loops of inspect and adapt
(sometimes referred to as the Plan, Do, Check, Act
cycle of Deming) becomes an important measure to
continuously emphasize on not only process related
matters, but also puts focus on inspection and adapta-
tion of the actual end product. This requires a culture
of shared responsibilities and ownership (sometimes
referred to as a “we build it, we run it” mentality).

Adopting a ‘left shift’ mindset for ensuring
better quality at speed

An important aspect in any organization is to detect
possible issues as early as possible in the software devel-
opment lifecycle. This aspect is sometimes referred to
as a ‘shift to the left’ approach. The ‘shifting to the left’
metaphor dates to the 1990s, as software development
organizations realized that the traditional/waterfall
approach to software development often led to poor qual-
ity software and expensive fixes. An important root cause
of these issues was that the actual testing was done far ‘to

Figure 2. Typical elements of the lifecycle.

Shift Left

Low Automation

A
tte

nt
io

n
to

 Q
ua

lit
y

Some Automation High Automation

Design & Plan Build Test & Run

Traditional

Software QualityCompact 2019 2 15

error can be reduced greatly by automating the work to
be done, including release and deployment of software
products to the infrastructure environment.

Similarly, security can be considered part of the shift left
mindset, which is sometimes called “DevSecOps”. Now,
security is considered a shared responsibility and should
therefore be part of the skills of a DevOps team. Secu-
rity aspects are part of the requirements, which leads
to a system which is “secure-by-design”. Lastly, security
should be measured in an automated fashion: from a
developer writing his code, which is being scanned for
vulnerabilities, to production being scanned for attacks.
This way, security is incorporated throughout the whole
development lifecycle instead of the end, where it tradi-
tionally resided.

By taking a system view (looking end to end), integrat-
ing significant parts of the workflow and measuring
the actual outcomes, software quality can be increased
significantly.

However, this shift is not only about tooling and pro-
cesses. They have very limited value unless they are
paired with a culture which stimulates and fosters
collaboration and continuous improvement, and which
is focused on a shared responsibility for all different
aspects within the project development cycle. Product-fo-
cused organizations can become more successful when
the focus is not just on a single development team, but
aligned at all levels of the organization.

Making the actual shift to deliver higher quality soft-
ware products at a much higher speed is not something
that will happen overnight. It requires a culture where
constant focus is put on experimentation, learning, and
adaptation to the actual needs.

CONCLUSION

Forward looking organizations understand that Agile & DevOps are about
shifting the value stream closer to the business. As discussed in this article,
the value delivery stream needs to be considered as a whole to be able to
fulfill the promise of delivering good quality software products at a constant
high pace.

The shift left mindset to quality focuses on solving issues as early as possible
in the software/product development lifecycle. Taking a left shift approach
to quality not only means fully automating the delivery pipeline, but also
already starting in the early phases before any code is written to validate
concepts, hypothesis, and prototypes with future end users. Integrating
these aspects into the value delivery chain, as well as paying continuous
attention to all quality aspects during development and operations, is key to
delivering good quality software products.

Integrating these elements into the overall process can be a main driver for
improved quality, risk reductions, and faster speed to market. Furthermore,
it can even improve quality of life for employees. By putting efforts in both
automation and process improvements, the business can focus on speed,
flexibility and quality at scale.

References
[Cool18]  Just Coolen, Tim de Koning, William Koot and Victor

Bos, Agile transformation of the (IT) Operating Model – Cross-
industry observations and lessons learned, Compact 2018/1,
https://www.compact.nl/articles/agile-transformation-of-
the-it-operating-model/, 2018.

[Fowl00]  Martin Fowler and Jim Highsmith, Manifesto for Agile
Software Development, The Agile Manifesto, https://www.
agilemanifesto.org/, 2000.

[Huss16]  Azham Hussain, Fazillah Kamal and Emmanuel
Mkpojiogu, The Role of Requirements in the Success or Failure of
Software Projects, ResearchGate, https://www.researchgate.
net/publication/308972993_The_Role_of_Requirements_
in_the_Success_or_Failure_of_Software_Projects, 2016.

Figure 3. The ‘left shift’ mindset.

About the authors
drs. Jos van Brummelen  works as a senior manager for KPMG

Digital. He is specialized in the implementation of (agile)
software development frameworks and methods.

Tom Slenders MSc  works as a senior consultant at KPMG
Digital. He has multiple years of experience as a software
developer and specifically focuses on advising clients about
their software delivery methods and frameworks.

